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EDDO (Estimation of Discrete Densities Online)

Applying the product rule to f (X4, X5, ..., X;,) yields

fl(Xl) ) fZ(XZ | Xl) BEELIEN fn(Xn | Xl'XZJ ""Xn—l)

Majority class for f;(X;)
Hoeffding trees for f;(X; | X{, X5, ..., X;_1)

Both enable the estimation in an online fashion.
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MiDEO (Mining Density Estimates inferred Online)
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Pattern Mining
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Setting

Iltemsets (X4, v3), (Xo,v1), (X1, V5)

Association rules (X4,v3), Xg,v1) = (X, v5)

Measure of interestingness

= minimum support threshold
- Conﬁdence f((Xll v5) | (X4-) vg), (Xg, vl))
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=  Geometric distribution for size

= Uniformly at random for the
elements
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{ generate density

Chernoff bounds

train estimator
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POEt — generating association rules
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POEt — generating association rules
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POEt — generating association rules
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Evaluation
Datasets
Dataset Instances Attributes
IBM dataset generator 100,000 100
Bayesian networks 100,000 10
Movielens 49,282 23
Compared to Performance measure |I I |
. N
= Apriori = percentaged overlap 1” | 2
= Moment 2
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ltemsets (1)

Dataset

Algorithm

IBM dataset generator Apriori 0.002 0.002 0.006
Moment 0.001 0.000 0.001
Bayesian networks Apriori 0.384 0.487 0.524
Moment 0.101 0.195 0.415
Movielens Apriori 0.133 0.111 0.333
Moment 0.143 0.111 0.143
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Evaluation - I[temsets (1)

Dataset

Algorithm

IBM dataset generator Apriori 0.002 0.002 0.006
Moment 0.001 0.000 0.001
Bayesian networks Apriori 0.384 0.487 0.524
Moment 0.101 0.195 0.415
Movielens Apriori 0.133 0.111 0.333
Moment 0.143 0.111 0.143

(Xgender» male): (Xtnritter, true), (Xcomedy) false)
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Evaluation - [temsets (2)

100

Percentaged overlap

20k 40k 60k 80k
Number of generated itemsets (in thousands)

100k
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Evaluation - Association rules

Dataset

Confidence

25%

IBM dataset generator 0.000 0.000 0.000
Bayesian networks 0.389 0.345 0.210
Movielens 0.098 0.093 0.100
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Conclusions and Future Work

= framework for algorithms operating on density -uNEEEEEEEEEEEEEEEEES- -
estimates Y

= a probabilistic condensed representation of data
= pattern mining on condensed representation

Future Work:
" more accurate itemset and association rule mining
= fastinference algorithm for speed-ups

= other algorithms that perform traditional data mining
tasks on online density estimates
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Thank you for your attention



